
Edisyn
A Java-based Synthesizer Patch Editor, Version 25
By Sean Luke sean@cs.gmu.edu

Contents

1 About Edisyn 2

2 Starting Edisyn 3

3 Edisyn Patch Editors 4

4 Creating and Setting Up Additional Patch Editors 5

5 Loading and Saving Files 6

6 Communicating with a Synthesizer 7

7 Communicating with a Controller 9

8 Communicating with a Software Synth or Digital Audio Workstation 11

9 Editing and Exploratory Patch Creation 12

10 Writing a Patch Editor 19

1

1 About Edisyn

Edisyn is a no-nonsense synthesizer patch editor for the editing and parameter exploration of a variety of
synthesizers. It is not skewmorphic or skinnable: its design is plain and consistent, though you can change
the colors. Edisyn is free open source. Edisyn currently supports the following synthesizers:

• Alesis D4 and DM5 (Single)

• Casio CZ-1, CZ-101, CZ-1000, CZ-3000,
CZ-5000, and CZ-230S (Single)

• Dave Smith Instruments Prophet ’08 and ’08
Desktop, Tetra, Mopho, Mopho Keyboard,
Mopho SE, and Mopho X4 (Single and (for
Tetra) Combo Modes)

• E-Mu Morpheus and Ultraproteus (Single,
Hyperpreset, and MidiMap)

• E-Mu Proteus 1, 1 XR, 2, 2 XR, 3, 3 XR, and
1+Orchestral (Single)

• Kawai K1, K1m, and K1r (Single and
Multimode)

• Kawai K4 and K4r (Single and Multimode)

• Kawai K5 and K5m (Single and Multimode)

• Korg SG Rack and SG Pro X (Single and (for
SG Rack) Multimode)

• Korg Microkorg (Single)

• Korg Microsampler

• Korg Wavestation SR (Performance, Patch, and
Wave Sequence)

• M-Audio Venom (Single, Multimode, Arp, and
Global)

• Novation Drumstation and D Station

• Oberheim Matrix 6, 6R, and 1000 (Single and
(for 1000) Global)

• PreenFM2 (Single)

• Red Sound DarkStar and DarkStar XP2 (Single
and Per-Part)

• Roland D-110 (Tone and Multimode)

• Roland JV-80 and JV-880 (Single and
Multimode)

• Waldorf Blofeld Desktop, Blofeld Desktop SL,
and Blofeld Keyboard (Single and Multimode,
plus wavetable uploading in Single: see the
Blofeld’s “About” panel)

• Waldorf Kyra (Single and Multimode)

• Waldorf Microwave II, Microwave XT, and
Microwave XTk (Single and Multimode)

• Yamaha DX7 Family (DX7, TX7, TX216/TX816,
Korg Volca FM, Dexed, DX200, DX9, etc.)
(Single)

• Yamaha 4-Op FM Family (DX21, DX27, DX100,
TX81Z, DX11, TQ5, YS100, YS200, B200, etc.)
(Single and (for TX81Z and DX11) Multimode)

• Yamaha FB-01 (Single and Multimode)

• Yamaha FS1R (Voice, Performance, and Fseq
Modes)

• Yamaha TG33, SY22, and SY35 (Single and (for
TG33) Multimode)

• General CC, NRPN, and RPN editing

• Alternative tuning and Microtuning editing

You’ll note a pattern among these synthesizers: many are very difficult to program.1 That’s one of my
interests.

Edisyn’s patch editors try to cover the most common needs, and so in most cases it does not support
patches for global parameters, nor for wave, sample, or wavetable editing2 etc. Additionally, though it can
do bulk downloads and save them as individual patches, Edisyn is not at present a librarian tool. You
should use a good free librarian software program, such as SysEx Librarian on the Mac.

1So why are the Prophet ’08, Blofeld, and Microwave XT there then? Because in fact these synthesizers are all ones I own or have
had access to, so they’re there too.

2The Blofeld patch editor only supports wavetable uploading, not editing: this is because there’s an excellent free wavetable-editing
tool available at https://synthtech.com/waveedit which is better than anything I could possibly write.

2

2 Starting Edisyn

Figure 1: Initial Synthesizer Dialog

If you’re on a Mac, Edisyn will look like a standard application, just
double-click on it. On other platforms, Edisyn comes as a single
Java jar file. Just double-click on the jar file (you’ll have to have Java
installed) and Edisyn should launch.

You’ll first be presented with the dialog at right, asking you to
choose a synthesizer patch editor. You can either select from all
synthesizers available, or from those you have recently edited with
Edisyn (the very most recent one is auto-selected for you). If you can’t
figure out why the “All Synths” option is disabled, try first choosing
“Select another synthesizer...” from the “Recent” popup.

Once you’ve picked a synthesizer, if you click Open, Edisyn will attempt to connect to it via MIDI directly;
you can also run in Disconnected Mode, where you’re not attached to MIDI. And of course you can Quit.

Figure 2: MIDI Dialog

Edisyn will now build a patch editor for you and display
it. But unless you chose Disconnected Mode, it’ll first ask
you to set up MIDI for this editor. The dialog at right presents
you with up to 6 fields (5 are shown here):

• The USB MIDI Device from which you will Receive
MIDI data sent by the synthesizer. Here we are sending
to a Tascam US-2x2 interface, which presents itself as a
generic, nameless device. (BTW, if you’re on a Mac and
you don’t like a generic name for your device, go to
the Audio MIDI Setup application in the Utilities folder,
double-click on the device, and change its name.)

• The USB MIDI Device to which you will Send MIDI to
ultimately be sent to the synthesizer. Here again we are
sending to the Tascam US-2x2 device.

• The Channel on which the synthesizer is listening.
(Here, 1).

• (Not visible here) The optional ID of the synthesizer. Some synthesizers require a special ID embedded
in their sysex so they can tell that the message is for them rather than another copy of the same
synthesizer. (The Yamaha TX81Z doesn’t have an ID, so it’s not displayed in this example).

• The USB MIDI Device from which you will receive MIDI data sent by a controller. This may be a
controller keyboard to play test notes on the synthesizer, or it may be a control surface to send CC data
to the synthesizer or to Edisyn itself. Here we are receiving from an Arturia Beatstep.

• The Channel over which you will receive MIDI data sent by a controller. This can be any specific
MIDI channel, or (in this example) “Any”, meaning any channel or OMNI.

If you are not connected to MIDI, or if you cancel, then Edisyn will inform you that you must continue in
Disconnected Mode.

Important Note If your USB MIDI device is manually disconnected, Edisyn won’t know until you ask
Edisyn to send the synth something (perhaps changing a parameter or uploading a patch). At that point,
Edisyn will get a clue and the patch editor window will change to Disconnected Mode.’

3

3 Edisyn Patch Editors

An Edisyn patch editor is a single window with multiple tabbed panes. You can switch tabs by clicking
on them or via shortcuts (see the Tabs Menu). The far-right tab is the About Tab. It gives you information
about the eccentricities of the synthesizer that require custom behavior in Edisyn (they all do!). You should
read it carefully to understand how Edisyn will interact with your synthesizer.

Categories At right is a typical tab pane. You’ll note that various widgets are grouped together in regions
(called Categories). There are four categories shown here. Three are arbitrary categories for this synthesizer:
“Global”, “LFO”, and “Controllers”. They’re in various colors to differentiate them. Other categories will be
found in other tab panes. But one category is special: the Synthesizer Category, always shown in white,
here named “Yamaha TX81Z”. It normally contains the patch name and bank/patch number.

Figure 3: Typical Patch Editor Panel (TX81Z)

Widgets Edisyn has a number of widgets. Here are a
few of them:

• The Patch Display, currently showing patch
“I004”. Sometimes this display will be inaccu-
rate, particularly if you manually change the patch
on the synthesizer while Edisyn is running; or if
Edisyn has no idea what the patch should be (it’ll
usually display a default value like, in this case,
“A001”.

• The Patch Name Button, currently showing
“DEMO SOUND”. Click on this button to change
the name of your patch. A dialog will pop up to let
you change the sound, with an additional Rules
button to explain the constraints the synthesizer
places on patch names.

• Displays of Keyboards. Select a key!

• Various Dials. These are semicircles in gray, partly in some other color, with a value in the center. Dials
vary in orientation. Most look sort of like a “C”, with the zero point at the bottom center. Other dials
are symmetric, such as the “Breath Ctrl. Pitch Bias” dial (bottom row, second from right in the Figure),
and have zero point at center top. Occasionally dials have other orientations: the goal is to keep the
zero point centered (at top or bottom).

You change values in a Dial by clicking on the dial and dragging vertically. You can also double-click
on a dial to reset it to a default value (often zero). If the Dial doesn’t have the finesse you require to hit
an exact value, hold down the Alt (or on the Mac, the Option key while dragging and you’ll get 4×
the resolution. Hold down the Control key and you’ll get 16× the resolution. Hold down both keys
and you’ll get 64× the resolution! Finally, you can two-finger drag (on the Mac), or spin the mouse
wheel to move the value by exactly 1 unit.

• Some Checkboxes (such as “Portamento”) and Pop-Up Choosers or ComboBoxes (such as “Wave”,
set to “Sawtooth”). These are should be straightforward.

• Various Pictorial Displays. Here, changing the “Algorithm” dial will modify the Algorithm Display
immediately to the right of it.

• Various Envelope Displays. Edisyn can draw envelopes using a variety of procedures. Consider the
Waldorf Microwave envelopes in Figure 4 above, for example. The first two envelopes are ADSR

4

Figure 4: Envelope Displays of the Waldorf Microwave II, XT, and XTk.

envelopes, but the third is the Microwave’s famous “Wave Envelope”, an eight-stage envelope with
two different looping intervals (shown below it), and with two special end times marked with vertical
lines (here, the dashed line is where optional sustain occurs, and the solid line is the end of the wave).
The last envelope is the Microwave’s “Free Envelope”, a four-stage envelope unusual in that it can
have both positive and negative values: the dashed line is the axis.

Mose Edisyn envelope displays are read-only – you can’t draw the dots. But that’s not always the case:
for example the Kawai K5 harmonics display can be extensively edited by mouse.

• Action Buttons. Some patch editors have buttons on them which perform actions rather than edit or
display values. For example many multimode-patch editors have buttons that pop up single patch
editors for the various individual patches.

If you are connected to a synthesizer over MIDI, then changing a widget will modify the underlying patch
parameter in real time, if the synthesizer supports this. Also, if you modify a parameter on the synthesizer,
then Edisyn will update the corresponding widget or widgets (again, if the synthesizer supports this).

4 Creating and Setting Up Additional Patch Editors

A patch editor is created by selecting one of the various New... menu options in the File menu.3 You have to
create a new a patch editor before you can start loading a patch from a file or from the synthesizer. You can
also Duplicate an existing patch editor (in the File menu). This will exactly duplicate the existing patch as
well.

Whenever you create a new patch editor or duplicate one, you will once again be asked to set up MIDI as
discussed in Section 2, or to run in Disconnected Mode.

4.1 Persistence

Now would be a good time to mention an Edisyn feature you may never notice otherwise: many things
are persistent. For example, if you choose “Arturia Beatstep” as the controller for your Blofeld patch, the
next time you call up a Blofeld patch editor, “Arturia Beatstep” will be presented as the default choice in the
MIDI Devices window, assuming your Arturia Beatstep is plugged in. This goes for everything in the MIDI
Devices window. Furthermore, if you pop up a new patch editor for a synthesizer you have never edited
before, the Arturia Beatstep will be the default option for that one too (until you change it one time). And
these options are per synthesizer type.

Persistence appears in other places too. For example, the Initial Synthesizer dialog will default to the last
synth you chose in that dialog. Persistence shows up in many other places as well.

3The New Synth menu presents you with several options. First there are the patch editors you have recently selected, if any. Next
come all available patch editors. Finally, you have menu choices to remove patch editors from the recent list.

5

5 Loading and Saving Files

Edisyn is capable of reading both sysex files or MIDI files and extracting sysex patch data from them. It can
in some situations read files which contain many patches: but Edisyn only writes files with a single patch
per file, and only in sysex file format.

You can save your edited patch via the Save and Save As... options in the File menu, and you can load a
patch via the Load... option. This is called Load and not Open because you can only load a file into an existing
patch editor: you cannot create a new patch editor automatically on opening a file. If the sysex file is not for
your patch editor, but Edisyn still recognizes its data, it’ll ask if you want to load for a different synthesizer.
If Edisyn doesn’t recognize the data at all, it’ll still tell you the manufacturer and give you the option of
uploading the data.4

Most patch editor files are sysex dumps ending in the extension .syx. These files are usually exactly the
same sysex data that you’d normally dump to your synthesizer using a patch librarian software program.
There are exceptions however. For example, some synthesizers, like the PreenFM2, have no sysex to speak of
at all: they exchange parameters entirely over NRPN. In this situation, Edisyn has invented a sysex file just
for the PreenFM2. This sysex file obviously wouldn’t work with your librarian software.

Some patch editor files have encoded the sysex dumps as MIDI files (typically ending with the extension
.mid. Edisyn can extract sysex from these files as well.

Loading or Receiving a Bulk-Sysex or Bank-Sysex File Edisyn tends to work with files which contain a
single patch each. However many patch files on the internet contain multiple patches. There are two kinds
of files of this type: what I call bulk sysex files, and bank sysex files.

A bulk sysex file is just a bunch of individual patch sysex messages concatenated together — you could
just cut it up into separate single-patch files if you liked.5 Bulk sysex files are common in many synthesizers,
such as the DSI Prophet ’08 or the Yamaha FS1R or the Waldorf Blofeld. When Edisyn loads a bulk sysex
file, it will present you a couple of options: you can select and edit a single patch from that file, either in the
current editor or a new editor, or you can write (upload) all of the patches in the file to your synthesizer.

It is possible that a bulk sysex file contains patch entries for several different kinds of editors or even
synthesizers. For example, a bulk sysex file might contain entries for both single patches and multi patches
for a given synthesizer, and these are loaded into different editors. Edisyn will inform you when there are
patches for different editors involved, and let you first select which editor you’re interested in, then select
which patch you want to edit.

Other synthesizers have special bank sysex messages which contain an entire bank (or in some cases, an
entire synthesizer’s memory worth) of patches in a single message. For example, most files on the internet
for the Yamaha DX7 synthesizer are bank sysex files. Edisyn might find a message like this when loading
a file, or it might receive the message from the synth over MIDI. When Edisyn has received a bank sysex
message or loaded one from a file, you can again select and edit a single patch from that bank, either in the
current editor or a new editor, or you can write (upload) all of the patches in the bank to your synthesizer; or
you can save the whole bank as to a file as a single bank sysex message.

It’s entirely possible that a bulk sysex file might itself contain multiple bank sysex messages. If from the
Bulk Sysex window you select a bank sysex message, Edisyn will then present you with the Bank Sysex
window for that bank. Note that in the Bulk Sysex window, these sysex messages will typically be labelled
“Bank Sysex”, since Edisyn usually has no other patch name for them.

Edisyn cannot presently construct (and thus save or upload) new bank or bulk sysex messages or files.

Batch Downloads Edisyn also has limited support for batch-downloading patches, one by one, and saving
them to your disk as separate files. To do this, choose Batch Download... from the File menu. You’ll be

4Thanks to the MIDI Association for updating their database to make this possible in Edisyn.
5This is harder than it sounds: some synthesizer patches consist of not one but several sysex messages as a group, and the number

isn’t consistent. Edisyn does its best to sort out what the patches are in the file, but if you get something which looks wrong, send the
file to me and let me look at it.

6

asked to specify the directory in which to save patches, and also first patch and the final patch, and then
downloading will commence. Note that if your final patch is “before” the first patch, then Edisyn will wrap
all the away around to get to the final patch. For example, if your synth has ten patches 1....10, and you
choose 8 as your first patch and 2 as your last patch, then Edisyn will download in this order: 8, 9, 10, 1, 2.

If Edisyn can’t download a particular patch (the synth isn’t responding), it’ll try again and again until
successful. So if it gets stuck, you can always stop batch-downloading at any time by choosing Stop
Downloading Batch from the File menu. Note that you can still screw with knobs, etc. while Edisyn is busy
downloading batches: but don’t do that. You’re just messing up the batches getting saved.6

Also note that as a failsafe Edisyn only allows the frontmost window to receive data over MIDI. This
means that while you’re batch-downloading, you can’t go to some other patch editor: the downloading
patch editor must stay in front. You can go to another application though (read a web browser say).

Exporting to Text Perhaps you might wish to describe your patch on you blog or your favorite forum. if
you choose Export to Text... from the File menu, Edisyn will write out all of its patch parameters to a text file.
Edisyn may occasionally break out parameters more than your synthesizer does: though usually it’s pretty
close to a one-to-one mapping. The parameter names can be cryptic sometimes: Edisyn often (not always)
names parameters in a manner fairly similar to how they’re specified by the synthesizer manufacturer in its
MIDI Sysex document, and synth manufacturers are not known for being consistent in their naming between
the sysex document and the user manual.

6 Communicating with a Synthesizer

First things first: if you’re working in Disconnected mode, you’ll need to set up MIDI before you can
communicate with your synthesizer. This is done by selecting Change MIDI in the MIDI menu. (By the
way, you can go Disconnected by selecting Disconnect MIDI in the MIDI menu as well). Remember that
you have to connect USB devices to your computer before starting up Edisyn, or it won’t see them, due to a
bug in the MIDI subsystem.

Now that you’re up and running, if you change widgets in the patch editor, many (not all) synthesiz-
ers will automatically update themselves. The opposite happens as well: changing a parameter on the
synthesizer will update it in Edisyn. See the About pane to determine if your synthesizer can’t do this.

By selecting Request Current Patch, you can also ask your synthesizer to send you a dump of whatever
patch it is currently running. It is often the case that synthesizers respond in such a way that Edisyn cannot
tell what the patch number or bank is. In these cases Edisyn will reset the patch number to some default
(like A001).

Request Patch... will ask the synthesizer to send Edisyn a specific patch that you specify. Edisyn often
(not always) does this by first asking the synthesizer to change to that patch and bank, and then requesting
the current patch.

Write to Patch... will ask the synthesizer to change to a new patch and bank which you specify, then
dump Edisyn’s current patch to the synthesizer to its permanent memory. Some synthesizers (like the
PreenFM2 or TX81Z) cannot be written to remotely via Edisyn. Instead, you will need to Send to Current
Patch, then manually save the current patch to patch RAM on the synth itself.

Send to Current Patch will dump Edisyn’s current patch to the synthesizer, instructing it to only update
its local working memory, and not to store the patch in permanent memory. This operation is primarily
used to sync up certain synthesizers which do not update themselves in real-time in response to parameter
changes you make.

Sends Real Time Changes controls whether the Edisyn will send parameter changes to the synthesizer
in real time in response to you changing widgets in the patch editor. This isn’t necessarily determined by the
synth model. For example, the default ROM for the Oberheim Matrix 1000 cannot handle real-time changes:

6I may change this in the future to something less fragile.

7

but ROM versions 1.16 or 1.20 (later bug fixes by the Oberheim user community) allow real-time changes
with no issue.

Repeatedly Send Current Patch causes Edisyn to constantly and repeatedly send the latest patch data
to the current patch. It does this at the same speed as it would ordinarily send test notes (see Section 6.1).
If Edisyn is also repeatedly sending test notes, then the patch dump occurs immediately before the test
note. The purpose of this option is to ease editing of synthesizers, such as the Casio CZ series, which do not
respond to real-time parameter changes.

Some synthesizers cannot do one or another of these tasks. When this happens, that feature will generally
be disabled in the menu. As always, read the About Tab to learn more about what’s going on with that
synthesizer model. See Section 10.1 for some information and griping about all this.

A synthesizer can also offer its own sysex messages to Edisyn without Edisyn requesting them. Edisyn
will try to handle these appropriately. Some synthesizers might send special bank sysex messages which
contain an entire bank (or in some cases, an entire synthesizer’s memory worth) of patches. Only a few
Edisyn patch editors know how to deal with these messages: notably the DX7 patch editor can handle these
just fine. In this case, you will be given three options, to upload the entire bank to the synthesizer (again), to
save the entire bank to a file, or to select a single patch from the bank and edit it.

6.1 Playing Test Notes

If you don’t have a controller keyboard, you can send a test note to your synthesizer by choosing Send Test
Note. You can also toggle whether Edisyn constantly sends a stream of test notes by choosing Send Test
Notes. And you can shut off all sound on the synthesizer with Send All Sounds Off (this also turns off
sending test notes).7

Edisyn gives you various options for adjusting the test note you send (though it’s always a “C”). You can
change the length of the test notes you send in the Test Note Length submenu. You can change the pitch
with Test Note Pitch and the volume with Test Note Volume. Finally, you can play a chord rather than a
single note with Test Note Chord.

Setting the Pause Between Test Notes will change how long Edisyn waits, beyond the note length itself,
before it plays the next note if you have Send Test Notes on. It doesn’t affect how fast you can play test notes
on your own. One special setting is Default: this is defined as an additional pause equal to the note length if
the note length is less than 1/2 seconds; or a pause of 1/2 second if the note length is greater than this.

Some synthesizers (such as the Yamaha DX) feature notoriously long release times on their envelopes,
so if you’re doing hill-climbing (see Section 9.4) or otherwise repeatedly sending test notes, the notes may
bleed into each other such that you can’t hear the note clearly. To fix this, you can set Send All Sounds Off
Before Note On to true. This will cause the Send Test Note facility to abruptly shut off all sound, like Send
All Sounds Off does, just before sending a new note.

6.2 Testing the Incoming Connection

If you’re not sure if you have MIDI data coming to Edisyn from your synthesizer, select Report Next Synth
MIDI from the MIDI menu. Then have your synth send any kind of MIDI message to Edisyn — a note, a
sysex message, whatever. For example, you could have Edisyn request a sysex dump from the synth. At any
rate, if Edisyn pops up a window telling you the message, then you have a live connection.

7Send All Sounds Off does three things in a row. First it sends an “All Sounds Off” message to all channels. Then it sends an “All
Notes Off” message to all channels (because some synthesizers respond to All Sounds Off but not All Notes Off, or vice versa). Finally,
it does a simple Note Off for any note it may have been playing, to all channels, because there exist a few synths that respond to neither
All Sounds Off nor All Notes Off.

8

7 Communicating with a Controller

The MIDI Dialog (Section 2) also lets you choose a device and MIDI channel for incoming messages from a
control surface or controller keyboard. Using this keyboard you can:

• Play the synthesizer (through Edisyn).

• Control the synthesizer (CC and Program Change messages, etc.)

• Control widgets in Edisyn

7.1 Testing the Incoming Connection

If you’re not sure if you have MIDI data coming to Edisyn from your controller, select Report Next Controller
MIDI from the MIDI menu. Then have your controller send any kind of MIDI message to Edisyn — for
example, play a note. If Edisyn pops up a window telling you the message, then you have a live connection.

7.2 Remote Control of your Synthesizer

If you play a note, do a pitch bend, etc., on your control surface, and Pass Through Controller Data is set,
then Edisyn will route all of those MIDI messages directly to your synthesizer (changing the messages’
channel to the one that Edisyn is using to talk to the synthesizer). Control Change (CC) and NRPN messages
from your control surface are passed through only if you have also toggled Pass Through All CCs in the Map
menu. Otherwise they might used to control Edisyn’ via its parameter mapping (see the end of Section 7.3).

If your controller is sending these messages on Edisyn’s Controller Channel, Edisyn usually just routes
them through unchanged, but it might route those messages to some other channel instead. This only
happens in certain patch editors where it’s appropriate. For example, the Kawai K4/Kr4 [Drum] Patch
Editor needs to forward note messages like these to the Kawai K4’s “Drum” channel to hear them. The
“Drum” channel is different from the Kawai’s primary MIDI communication channel (which is what Edisyn’s
Send Channel is set to).

7.3 Remote Control of Edisyn

Edisyn is capable of mapping Control Change (CC) messages or NRPN messages from your control surface
to parameters in your patch editor. Each patch editor type can learn its own set of CC and NRPN mappings.

Mapping a Parameter Mapping a parameter is easy:

1. Choose one of three MIDI mapping menu options discussed next. The title bar will say “LEARNING”.

2. Select the widget you want to map, and modify it slightly. The title bar will change to “LEARNING
parameter[range]”, where parameter is Edisyn’s name for the synthesizer parameter in question, and
its values are in (0...range− 1). The title bar might also tell you what the previous mapping was. If
range > 127 then you should think about mapping with 14-bit NRPN instead of CC.

3. Press or spin the knob/button on your controller. You’re now mapped!

4. If you have chosen an absolute mapping, you’ll want to change your controller’s range to (0...range− 1).

Edisyn accepts any of the following MIDI Control commands.

• Absolute CC The value of the CC sent is exactly what the parameter will be set to (between 0...127).
To map, choose Map CC/NRPN in the Map menu. This style is particularly useful for potentiometers
or sliders. You are not permitted to map CC numbers 6, 38, 98, 99, 100, or 101, or Edisyn will think
you’re sending NRPN. So you only have 121 CCs to play with.

9

• Relative CC Here, the CC value you send indicates how much to add to or subtract from the existing
parameter value.8 This style is supported by a number of controllers and is useful for encoders.9 For
example, the Novation controller series calls this “REL1” or “REL2”10, and the BeatStep calls this
“Relative 1”.11 To map, choose Map Relative CC in the Map menu. Again, you’re not permitted to
map CC numbers 6, 38, 98, 99, 100, or 101.

• NRPN You are permitted to map any NRPN parameter you like. The value of the CC sent is exactly
what the parameter will be set to: all 14 bits. If your controller can only send 7-bit NRPN, then you
should configure it to send “Fine” or “LSB-only”. Edisyn also supports the NRPN Increment and
Decrement options, though those are rarely supported by hardware. To map, choose Map CC/NRPN
in the Map menu.

Mapping by Panel or by MIDI Channel By default, Edisyn only maps and responds to CCs (or NRPN
etc.) if they are on Edisyn’s controller channel. Each tab in a patch editor can have its own unique set of
mappings: for example, the Oscillators tab might use CC#1 to change the Start Wave parameter, but the
Envelopes tab might use CC#1 to change the attack of Envelope 1. The mapping being used at the moment
depends on which tab is being displayed.

Alternatively, if you toggle Do Per-Channel CCs, you can ask Edisyn to instead remember the channel
of mapped CCs (or NRPN). Then you can map CC#1, on (say) channel 4, to the Start Wave parameter on
the Oscillators tab, and map CC#1 on channel 7 to the attack of Envelope 1 on the Envelopes tab. If CC#1
arrives on channel 4, the Start Wave parameter will be adjusted even if the Oscillators tab isn’t being shown;
similarly if CC#1 arrives on channel 7, then the attack of Envelope 1 will be adjusted even if the Envelopes
tab isn’t being shown.

If your controller can only send a few CCs (it only has a few knobs and buttons) I would use the first
option (per-panel mapping). If your controller can send a vast number of CCs, or you’re comfortable with it
from experience with your DAW, you might use the second option.

Where Data Goes Whether Edisyn will pass through data to your synth, or block it, or intercept it in order
to map it, is as follows. If the data is CC/NRPN, then Edisyn must decide whether to intercept and map it.
If you have selected Pass Through All CCs, Edisyn isn’t permitted to intercept any CC/NRPN data at all.
Otherwise Edisyn will intercept the CC/NRPN data if it is on your Controller Channel, or if the Controller
Channel is OMNI, or if you have selected Do Per-Channel CCs.

If Edisyn isn’t intercepting and mapping the data, or the data is something other than CC/NRPN, then
Edisyn must then decide whether to block the data or pass it through to your synth. This is easy: the data is
passed through only if Pass Through Controller MIDI is selected.

There are many situations where these combinations are useful. Here’s a fun example. Suppose your
synth doesn’t respond to CC (only NRPN or Sysex) but you’d like to control it from your DAW, which only
does CC, as is the case for many bad DAWs. You could set up the DAW as your Edisyn controller and
map CCs to various synth parameters. Then you’d pass through non-CC data via Edisyn to the synth, but
intercept CC data from the DAW to update parameters via Edisyn.

8Specifically, a value x = 64 means 0 (add nothing), a value x < 64 means to subtract 64− x from the current value, and a value
x > 64 means to add x− 64 to the current value.

9You could also map a pair of pushbuttons to be up/down cursors using this method: set up the “down” pushbutton to send 63 and
the “up” pushbutton to send 65.

10The difference being that in REL2 mode, if you spin the encoder rapidly, the amount added/subtracted is nonlinearly more than
expected, whereas in REL1 the speed doesn’t matter, all that matters is how far the encoder was turned. Novation controllers also have
a relative CC mode called “APOT”, which is not supported.

11The Beatstep also has relative CC modes called “Relative 2” and “Relative 3”, which are not supported.

10

8 Communicating with a Software Synth or Digital Audio Workstation

In some situations you might wish to get Edisyn to communicate with a software synth: for example Dexed12

is a nice DX7 emulator and works well with Edisyn. Or perhaps you might want to use Edisyn to translate
CC messages from your DAW into Edisyn parameter changes, which then get forwarded to a synthesizer as
sysex (see Section 7.3 to learn how to map CC messages to parameter changes).

You’d think it’d be easy to connect directly to another piece of software on your computer. But you’d
be wrong! The problem is that Edisyn, because it’s written in Java, can only connect to MIDI devices, and
your software synthesizer or DAW has probably not registered itself as a device — it likewise probably is
designed only to connect to MIDI devices, and so cannot see Edisyn either.

Loopback
Connection Virtual

Device
Output

Virtual
Device
Input

Edisyn
Software

Synthesizer

Figure 5: A MIDI loopback connecting Edisyn
with a software synthesizer via a virtual device.

To get around this, you need to make a MIDI loopback.
This is where you create two virtual devices which are
connected to one another. Edisyn and your software
synth or DAW can see these devices. Consider Figure
5. If Edisyn outputs to Virtual Device X (say) and your
software synth or DAW is set up to input from Virtual
Device X, then it will receive what Edisyn outputs.

Similarly, if you need your software synth or DAW to send MIDI to Edisyn, you need to make a second
loopback and hook it up in the reverse order.

Making a Loopback Device This varies depending on your operating system.

• On the Mac First, open the application /Applications/Utilities/Audio MIDI Setup. Next, click on the
“IAC Driver” icon to open the “IAC Driver Properties” window. Add a new port, named whatever you
like. Check the box “Device is Online”. This new port will be appear to Edisyn and to your software
synth as the loopback device. You can add more ports to create more loopbacks. A loopback is only
one-way: if you want Edisyn to send to and receive from a software synthesizer or DAW, you’ll need to
make two ports.

• On Windows There is no way to do this in Windows directly: instead you’ll need to run a program
which provides this service. Programs include loopMIDI, loopBe1, MIDIOx’s MidiYoke, and so on.
Googling for “loopback MIDI Windows” will get you there.

• On Linux In most flavors of Linux, to get virtual devices running you’ll first need to type the
command sudo modprobe snd-virmidi and then type in your password. If you’re using something
like Gentoo or any other distro that does not come with this kernel module, you’ll need to custom
compile your kernel to get it.

This procedure will create a bunch of of virtual devices with names like VirMIDI [hw:2,0,0] or
VirMIDI [hw:2,1,8]. Select a device whose third number is 0 (such as VirMIDI [hw:2,0,0] or
VirMIDI [hw:3,1,0], but not VirMIDI [hw:2,1,1]). Have Edisyn send to this device and have the
software synthesizer listen from the same device. If you want to hook Edisyn and your synth up the
other direction (so Edisyn receives from the synthesizer), you’ll need to select a second virtual device.

Warning The “loop” in loopback is apropos. If you fire up Edisyn and you’re not careful, it may set up
your loopback as both its input and output. That would be unfortunate: Edisyn would send a patch out the
loopback, which would then arrive at Edisyn’s input, which would cause Edisyn to parse the same patch,
which would in turn cause Edisyn to send the patch again, and so on. So you want to make sure that Edisyn
doesn’t have the same loopback device as both input and output. Obviously other devices (such as your
MIDI/USB converter) can serve as both input and output.

12https://asb2m10.github.io/dexed/

11

9 Editing and Exploratory Patch Creation

Edisyn has a large number of facilities to help you program your synthesizer, including tools to help you
wander through the possible space of patches to hunt for the sound you want. Here’s what you can do.

9.1 Editing Tools

Undo and Redo Edisyn has infinite levels of undo and redo. When you change a parameter or do a
wholesale modification, this can be undone, as can patch dumps and merges from the synthesizer. Individual
parameter changes made manually on the synthesizer are not undoable even if they’re reflected in Edisyn
(it’d be too many). Loading and saving patches is not undoable. See the Edit menu.

Reset You can reset the patch editor to its “init patch”. Just choose Reset in the Edit menu.

Category Cut/Paste, Distribution, and Reset Each category has a pop-up menu you get when you right-
click or shift-click (or two-finger click on a Mac trackpad) on the category name. You can:

• Copy Category Marks the category to be pasted into other compatible categories.

• Paste Category Copies over all the parameters from the “copy” category, if it is compatible.

• Distribute Copies the last-modified parameter to all similar parameters in the category. For example,
if you modified a step sequencer step, this might copy its value to all 15 other steps. Note that you
won’t be able to select this option until you have actually modified, even slightly, some parameter inside
the Category — perhaps a dial, say.

• You can also restrict your Copy, Paste, or Distribute to mutation parameters only.

• Reset This resets all the parameters in the category to their defaults.

Tab Cut/Paste and Reset For some synths, you can also cut/paste entire tabs. Choose these menu options
under the Edit menu:

• Copy Tab Marks the tab to be pasted into other compatible categories.

• Paste Tab Copies over all the parameters from the “copy” tab, if it is compatible.

• Copy Tab (Mutation Parameters only) Marks the tab to be pasted into other compatible tabs, but
only from the mutation parameters you have set (see Section 9.3).

• Paste Tab (Mutation Parameters only) Copies over all the parameters from the “copy” tab, but only
to the mutation parameters you have set (see Section 9.3).

• Reset This resets all the parameters in the tab to their defaults.

9.2 Exploration Tools

Randomize (by some amount) You can add some randomness your patch parameters. Try a small value:
values ≥ 50% are essentially full randomization. See the Randomize submenu in the Edit menu. Because
it’s so common to randomize, then undo and try again, you can also do undo-and-randomize-again as a
single task: select Undo and Randomize Again in the Randomize submenu of the MIDI menu. See below
for a discussion of how randomization (called mutation) works in Edisyn.

12

Merge (by some amount) This causes Edisyn to directly recombine with your current patch with another
patch to form a randomly merged patch. You specify the degree of recombination as a percentage: see the
options in the Request Merge submenu of the MIDI menu.

Some patch editors may not be able to perform merges because the synthesizers can’t load specific
patches: if your synth can’t do Request Patch..., it probably can’t do a merge either. A few synthesizers (like
the Red Sound Darkstar) can only do merges with some manual effort on your part: see their About panes.

Load and Merge This option, in the File menu, lets you load a file and merge it with your current patch in
more or less the same way that Merge works. The merge percentage is always 100% (that is, half-half).

Blend This causes Edisyn to request two random patches from your synthesizer and merge them with one
another, with a merge percentage randomly ranging from 50% to 100%, producing an entirely new randomly
combined patch. See the Blend submenu in the Edit menu. You do your first blend by selecting Once...,
then selecting the beginning and ending patches defining the patch range from which Blend will select its
random patches. Blend will then do its thing. If you want to try again, select Undo and Blend Again.13

Nudge The nudge facility lets you push your patch to sound more and more like one of four other target
patches you have chosen. Before you can nudge, you have to first select patches to nudge towards. You
can pick up to four patches by choosing an option under the Setup 1 ... Setup 4 submenus under the Edit ¿
Nudge menu. These options will load nudge targets 1...4 with copies drawn from various sources. Your
options are: From Current Patch, Load File..., From Morph (the current Morph value, see Section 9.6 below),
and From Hill-Climb Archive q through v (the six Hill-Climb archives, see Section 9.4 below). You don’t
have to set up all four targets.

Above the Setup options are four Towards and four Away From options, also in the Nudge submenu of
the MIDI menu. When you set up a patch, its name will appear in those Towards/Away From options. The
patch name is just a helpful reminder — different patches can have the same name.

When you chose any of Towards 1:... through Towards 4:..., your current patch will get recombined with
the target patch, by default by 25%, to move it towards that target. Similarly, when you chose any of Away
From 1:... through Away From 4:..., your current patch will get adjusted (through a form of recombination)
to move away from the target patch, by default by 25%. You can change the degree of recombination under
the Set Nudge Recombination menu. Additionally you can add some automatic mutation whenever you
nudge: just set its amount under the Set Nudge Mutation menu (by default it’s 0%). If you did a nudge and
didn’t like it, you can try a slightly different one with Undo and Nudge Again.

A hint. It’s a good idea to select target patches which don’t have some radical difference creating a
nonlinearity in the space between them: for example, if you were doing FM, I’d pick patches which all used
the same operator Algorithm. See below for a discussion of how recombination works in Edisyn.

Hill-Climb Hill-Climbing repeatedly presents you with sixteen sounds and asks you to choose your
top three preferred ones. Once you have selected the three best, it performs various recombinations and
mutations on those sounds to prefer sixteen new ones and the process repeats again. The idea is for your
preferences to guide the hill-climber as it wanders through the space of synth parameters until it lands on
something you really like.14 For more on the Hill-Climber, see Section 9.4.

Morph Morphing interpolates in real-time between four different patches. It’s similar to nudge in certain
respects, but is more interactive. The big difference is that Nudge always moves the patch directly towards
or away from a single patch (of four); but Morph changes the patch based on its relative distance to up to
four patches in combination. For more on the Morph tool, see Section 9.6.

13Note that because Blend loads the first patch, then merges the second, it effectively pushes two things onto the undo stack; so Undo
and Blend Again will pop two things off before re-blending. This might be confusing.

14If you’re technically inclined, this is basically an evolution strategy (ES) with an elitism of 1 and a biased mutation procedure. If
you’d like to learn more about evolutionary computation methods, google for the free online book Essentials of Metaheuristics by me.

13

9.3 Restricting Mutation and Recombination to Only Certain Parameters

You can restrict Mutation and Recombination (used in Randomize, Nudge, Merge, Blend, Hill-
Climb/Constrict, and Morph) to only affect a subset of parameters. To do this, choose Edit Mutation
Parameters in the Edit menu. This will turn on Mutation Parameters mode (you’ll see it in the window’s title
bar). You’ll note that various widgets have now been surrounded with red frames. These widgets control
synth parameters which are presently are being updated when you mutate a patch.

Figure 6: Editing Mutation Parameters

You can change these of course: just click on them
and you can remove them from being updated (or add
them back).15 You can also turn on (or turn off) all of
the parameters in a category by double-clicking on the
category title. The categories in Figure 6 are Yamaha
TX81Z, Global, LFO, and Controllers. Finally, you can
turn on all the parameters in the entire patch editor
by selecting Set All Mutation Parameters in the Edit
menu, or conversely turn them all of by selecting Clear
All Mutation Parameters.

Some parameters, such as the patch name or cer-
tain other parameters, can’t be mutated no matter what:
these have been declared immutable by the patch editor.
They will never have a red frame no matter how much
you click them.

The parameters you have selected will be the only
ones changed when you mutate (randomize) a patch.
But if you turn on Use Parameters for Nudge/Merge in
the Edit menu, then recombination (nudging, merging) will be restricted to these parameters as well.

Once you’re done choosing parameters to mutate or recombine, just select Stop Editing Mutation
Parameters in the Edit menu.

Note that your parameter choices, as well as using them for recombination, are persistent: they’re saved
in the preferences.

9.4 Hill-Climbing

Figure 7: The Hill-Climber Panel

Edisyn’s hill-climber is another of its patch-
exploration tools. You select it by choosing
Hill-Climb in the Edit menu. This will add
a new tab to your patch editor labelled Hill-
Climb. When you fire up the Hill-Climber, it
appears as an additional tab after your About
tab. Whenever you select a tab other than the
hill-climber tab, the hill-climber will pause;
when you go back to the hill-climber tab it
will resume. You get rid of the hill-climber
by selecting Stop Hill-Climbing in the Edit
menu.

In the Hill-Climber tab, make sure that
the “Method” combobox is set to Hill-Climb:
for other methods, see the Constrictor Sec-
tion (9.5).

15Note that due to an error in Java’s design, you can’t click directly on a Combo Box (a pop-up menu) such as the “Wave” combo box
in Figure 6. But you can click on its title (the text “Wave”).

14

Edisyn’s Hill-Climber repeatedly offers you sixteen new versions of patches and asks you to choose your
top three preferences. After you have chosen them, the Hill-Climber will try to build a new set of sounds
whose parameters are similar to your choices in various ways. The Hill-Climber builds new sounds by
recombining your top three sound choices in certain ways and adding some degree of noise (mutation) to
them. If you’re lucky, Edisyn will head towards regions of the synthesizer’s parameter space which make
sounds you like. Hint: You will have more success with the hill-climber if you restrict the parameters
being mutated to just those you want to explore. Different kinds of synthesizers will also benefit from
different amounts of exploration (mutation and recombination) rates. You’ll need to tweak those as necessary.

Candidates This region holds the current candidate patches. When you start up the Hill-Climber, it will
begin playing each candidate patch in turn. If you don’t want Edisyn to play automatically, you can turn
it off by choosing Send Test Notes... in the MIDI menu. Either way, you can manually play a patch by
pressing its Play button, or by typing the key located on that button. You can of course also choose which
three patches you like the most (in order).

Iterations After you have selected your preferred patches, you can build a new set of patches from them by
pressing the Climb button. This will also increment the iteration number. If you don’t like the patches that
were built, you can try again by pressing the Retry button. If you’d like to back up to a previous iteration,
press Back Up. Finally, to reset back to the very first iteration, press Reset and choose “From Original Patch’.

The amount of mutation noise used when generating new patches is specified by the Mutation Rate dial.
Typically you’d select something around 5–10. Additionally, by default the Hill-Climber lets you select from
16 candidates. But if you press Big, this set will expand to 32 candidates.

Archive If you like a patch and you’d like to hold onto it even after hill-climbing to the next iteration, you
can place it in the archive. The archive consists of six patch locations: to copy a patch to a given archive
location, click on its Options button and select one of Archive to q through Archive to v (the Archive
patches are so named because presently played by pressing keys q through v). Archived patches can also be
selected to participate in hill-climbing: just pick a number under a given patch.

Current and None The Current category holds the patch currently being edited in your editor, and it too
can be selected to participate in hill-climbing at any time. Finally, if you select a number in the None category
(number 2, say) then no patch is selected for number 2 at this time.

Additional Options The Options button holds some additional features besides just copying to the archive.

• Keep Patch Loads the patch into the current patch in your patch editor.

• Edit Patch Creates a new patch editor and loads the patch into that. Note that if you edit the patch in
its editor, the changes you make will be automatically reflected here.

• Save to File Saves the patch to a file.

• Load from File Changes the patch to one loaded from a file.

• Nudge Candidates to Me Nudges all the candidates towards the given patch.

More Keystroke Options All the patches can be played by pressing their associated letter. But additionally
you can (at present) Climb by pressing the Space Bar, Retry by pressing the Return/Enter key, and Back Up
by pressing Backspace.

15

9.5 Constricting

Figure 8: The Hill-Climber Panel converted for Constricting.

The Constrictor is similar to the Hill-Climber
in many ways, yet its dynamics and behavior
are quite different. You choose the Constrictor
in the same way as the Hill-Climber: by choos-
ing Hill-Climb in the Edit menu. But then
in the Hill-Climb tab, change the “Method”
combobox to Constrictor.

The Constrictor auditions patches to you
in exactly the same way was the Hill-Climber.
But you’re not given the option of choosing
your top three choices. Instead, you’re asked
to choose which patches you don’t like. This
is done by deselecting their checkboxes. Af-
terwards, you click on the Constrict button
and those patches will be replaced with recom-
bined and mutated versions of the remaining
patches. The newly recombined replacements will be moved to the front of the Candidates so you hear them
first.

The idea behind the Constrictor is to start with a set of varied but high-quality patches — derived from
well-vetted factory patches for example. Think of these patches as the outer boundaries of a large region of
the space. As you delete patch sounds you don’t like, this region slowly begins to collapse, until ultimately it
converges to a single patch.

The Mutation Rate dial controls the degree of mutation rate for the constrictor. Note that this rate is
different from, and stored apart from, the hill-climbing mutation rate. By default there is no mutation.

Initialization For the constrictor to work, you have to initialize the Candidates with a set of varied patches.
You could load these patches one by one by clicking on each Candidates’ Options button and choosing Load
from File. But there’s an easier way. Load just the first four Candidates this way, via Load from File, and then
clicking on the Reset button and choose From First Four Candidates. The remaining candidates (5...16, or
even 5...32) will be generated from recombinations of the first four. If you’re doing 32 candidates (that is,
you pressed the Big button), you might consider loading the first six candidates and then choosing From
First Six Candidates, which gives a better mix.

Using the Constrictor Along with the Hill-Climber It’s not a bad idea to start with a constrictor, constrict
down to a single patch or so, and then switch over to the hill-climber and hill-climb from there. It is a bad
idea to go from the hill-climber to the constrictor because the hill-climber restricts the candidates to a small
space and the constrictor will constrict that small space almost immediately.

16

9.6 Morphing

Figure 9: The Morpher.

The Morpher allows you to try out patches, in
real time, that are a combination of four differ-
ent patches. Shown in Figure 9, the Morpher
largely consists of a big rectangle with a dif-
ferent patch at each corner. Once you have
set up these patches, you can drag a joystick
cursor (the blue circle) within this rectangle,
and it will change the synthesizer’s patch to
reflect a combination of the four patches. The
closer the cursor is to a patch the more it will
resemble it.

Patches are updated on your synthesizer
in real time as you change the joystick cursor
position. To do this, Edisyn sends the entire
patch to the synthesizer on the fly in the same
way that “Send to Current Patch” is done. Keep in mind that some synthesizers can take a bit of time to
update themselves to a new patch, so depending on the synthesizer this can be either smooth or a bit jumpy.

Initialization When you fire up the Morpher, it will place a copy of the current patch in the top-left corner.
You can load patches in additional corners (or overwrite the top-left corner) by clicking on their buttons
and choosing Load from File ..., which loads a patch from a file. You can also load a patch from any of
the Hill-Climbing archive slots (q through v). And you can take a patch from any of the Nudge slots (1
through 4).

If you want to load slots from the synth, at present you have to go the current patch editor, manually
request the current patch, then go back to the Morpher and initialize a corner with Set to Current Patch. This
is because Edisyn is at present designed to load patches from synths directly into the editor and not into the
Hill-Climber or Morpher.

If you don’t initialize a corner, it is set to “[Empty]”. Empty corners do not participate in affecting the
sound at the Joystick cursor position.

Morphing Once your corners are set up, drag the joystick cursor and listen to the result. Here’s how
morphing is done. Edisyn first computes the distance from each corner to the Joystick cursor: it’s not what
you think. Think of the grid as a perfect square. The distance is the maximum of the X distance and the Y
distance. The patch’s metric (numerical) parameters, such as, say, Filter Cutoff, are based on the average of
the four corners, each weighted by its distance. The further the distance, the less important the corner.

Non-metric parameters, such as (say) choice of filter or the PCM sampled sound played, are a different
matter. The value for a non-metric parameter is based on a strategy of your choice. You can force the sound
to draw its non-metric parameters entirely from the current patch, from any of the four corners, or from the
closest corner. Or you can Morph the non-metric parameter. This means that as you approach a corner, the
probability that the metric parameter will change to match the patch in that corner increases.

Auditioning As you are morphing, you’ll want to hear the sound in real time: that’s the whole point. The
Morpher turns on repeatedly sending test notes just as the Hill-Climber does. But the big issue is when and
how often the morphed patch is sent to the synthesizer. You have several options here, under the Send to
Synth chooser:

• When Playing Test Notes This is the default, and usually the best option. Here, the Morpher will send
the entire patch immediately before it plays a test note. (If you have turned off sending test notes, the
Morpher will never send the patch).

17

• When Changing The Morpher will send the entire patch every time the joystick cursor changes. This
can be slow if the synthesizer takes a long time to update itself, but it is often the best choice if you are
playing notes yourself. Your synthesizer is unlikely to change its sound to reflect this change until the
next note is played.

• Trickle The Morpher will constantly send a single random parameter16 to the synth. If your synth
updates itself in real-time in response to changes to these parameters, this will slowly update the patch
sound of a long-playing note. However many synths only update themselves when the next note is
sounded, in which case it makes more sense to choose When Playing Note. Note that sending individual
parameters like this may take a while to fully update the patch on the synth. Also note that this floods
MIDI with messages.

• Deluge The Morpher will constantly send the entire patch to the synth. If your synth updates itself in
real-time in response to changes to these parameters, this will rapidly the patch sound of a long-playing
note. However many synths only update themselves when the next note is sounded, in which case it
makes more sense to choose When Playing Note. Note that this floods MIDI with messages, causing
much more congestion than Trickle (there’s a reason it’s called Deluge).

Editing During the morphing process you might wish to modify a corner. In addition to reloading it
from various sources as discussed earlier during Initialization, you have some more options available when
clicking on its button. For example, you can swap corners with one another, which is useful for rearranging
corners as you like. You can also Set to Joystick Position, which sets the corner to the the current auditioned
patch at the Joystick position, and Clear, which clears a corner of its patch (setting it to “[Empty]”).

Moving the Joystick via CC You can set the Joystick’s X and Y values via CC MIDI commands. Simply set
the X CC and Y CC dials to the CC parameter numbers to control the X and Y directions respectively. Edisyn
will remember these parameter settings in the future.

Exporting a Patch When you are satisfied with the current sound at your Joystick cursor, you can save it
by pressing the Export... button. Your three options are to Keep Patch, which loads the cursor patch into the
current editor, Edit Patch, which loads it into a new patch editor, and Save to File, which, well, saves it to a file.

Quitting Quitting the Morpher works much like quitting the Hill-Climber: choose Stop Morphing in the
Edit menu.

16Edisyn shuffles the parameters, then sends them in turn, then shuffles again, and so on.

18

10 Writing a Patch Editor

So you want to write a patch editor? They’re not easy. But they’re fun! Here are some hints.

10.1 Step One: Understand What You’re Getting Into

Make sure you understand that Edisyn can only go so far to help you in writing a patch editor: but
synthesizer sysex world is an inconsistent, buggy mess.

For example, the Waldorf Blofeld’s multimode sysex is undocumented and must be reverse engineered.
The PreenFM2 bombs when it receives out-of-range values over NRPN, but happily sends them to you. The
PreenFM2 has sysex files for its patches, but they are undocumented and are basically unusable memory
dumps of IEEE 754 floating-point arrays. The Yamaha TX81Z requires not one but two separate sysex patch
dumps in a row, in order to be backward compatible with an earlier synth family nobody cares about: it
also is incapable of writing a patch (likewise the PreenFM2). And it too bombs if you send it invalid data.
The Kawai K4’s sysex documentation is riddled with incredible numbers of errors. The Matrix 1000 accepts
patch names but doesn’t store or emit them: it just ignores them. The Red Sound DarkStar has extremely,
extremely limited sysex. Synths often pack multiple parameters into the same byte, making it impossible to
update just a single parameter: you have to update five at a time. There are multiple different strategies for
packing data of size 8 bits and up. Some synths, like the Futuresonus Parva, DSI Prophet ’08, and Yamaha
DX7, are highly regular in their format, while others, like the infamous Korg Microsampler, require custom
tables for nearly every parameter.

Below is a little table of the current patch editors for Edisyn, and various Edisyn capabilities that they
can or cannot take advantage of.

19

Se
nd

Pa
ra

m
et

er

R
ec

ei
ve

Pa
ra

m
et

er

R
eq

ue
st

Sp
ec

ifi
c

Pa
tc

h

R
eq

ue
st

C
ur

re
nt

Pa
tc

h

Se
nd

to
C

ur
re

nt
Pa

tc
h

Se
nd

to
Sp

ec
ifi

c
Pa

tc
h

W
ri

te
to

Sp
ec

ifi
c

Pa
tc

h

C
ha

ng
e

M
od

e

R
ec

ei
ve

Er
ro

r
or

A
ck

St
an

da
rd

Sy
se

x
Fi

le

Alesis D4/DM5 X* X X X X X
Casio CZ X X X X X X*

DSI Prophet ’08 X X X X X X X X
E-Mu Morpheus / UltraProteus X X X X X

E-Mu Proteus X X X X X
Waldorf Microwave II/XT/XTk X X X X* X X X X X

Waldorf Blofeld X* X* X X* X X X X
Kawai K1/K1r/K1m X* X X X X

Kawai K4/K4r X* X X X X X X
Kawai K5/K5m X X X X X X X

Yamaha DX7 X X X X
Yamaha 4-Op X* X X X X*

Yamaha FB-01 X* X X X X* X X*
Yamaha FS1R X X X X X X X

Yamaha TG33/SY22/SY35 X* X X X X
PreenFM2 X X X X X X X

Red Sound DarkStar/DarkStar XP2 X X X
Roland D-110 X X* X* X* X* X

Roland JV-80/880 X X X X X X*
Novation Drumstation/D-station X* X* X

Oberheim Matrix 1000 X X X X* X* X X
Korg Microsampler X* X*

Korg SG Rack X X X X X X X
Korg Wavestation SR X X X* X* X X X* X

M-Audio Venom X X* X X* X* X* X* X X

* With significant caveats or restrictions

I particularly love how the Korg Microsampler and the Korg SG are disjoint in their abilities; yet they’re
from the same company. Long story short, you’ll probably have to do a lot of customization. I’ve tried to
provide many customization options in Edisyn. If you need something Edisyn doesn’t provide, contact me.

10.2 Step Two: Set Up the Development Environment

Still not scared away? Okay, we’ll start by getting Edisyn set up for development. Probably the easiest way
to fire up Edisyn for purposes of testing is as a build directory. You just need to add two items to your
CLASSPATH:

1. The coremidi4j-1.1.jar file, located in the libraries/ folder (you can move it where you like). This
jar file contains the CoreMidi4J library, which enables sysex to work properly on Macs (you’ll need it
for non-Macs too).

2. The trunk directory. This parent directory holds the edisyn package. Or if you like, make some other
directory foo and move (or link) edisyn into that directory, then add foo to your CLASSPATH.

Now you can compile Edisyn with javac edisyn/*.java edisyn/*/*.java edisyn/*/*/*.java

You can then run Edisyn as java edisyn.Edisyn

20

10.3 Step Three: Create Files

Let’s say you’re adding a single (non-multimode) patch editor for the Yamaha DX7.
Make a directory called edisyn/synth/yamahadx7. This directory will store your patch editor and any

auxiliary files. Next copy the file edisyn/synth/Blank.java to edisyn/synth/yamahadx7/YamahaDX7.java.
That’ll be your patch editor code. Also copy the file edisyn/synth/Blank.html to
edisyn/synth/yamahadx7/YamahaDX7.html. This will be the “About” documentation for your file.
You’ll eventually fill it out.

Modify the YamahaDX7.java file to have the proper class name and package.
Edit the edisyn/Synth.java file. In that file there is an array called:

public static final Class[] synths

Add to this array your class:

edisyn.synth.yamahadx7.YamahaDX7.class,

Now Edisyn knows about your (currently nonexistent) patch file.
Finally, implement the getSynthName() and getHTMLResourceFileName methods in your class file, along

these lines:

public static String getSynthName() { return "Yamaha DX7"; }

public static String getHTMLResourceFileName() { return "YamahaDX7.html"; }

10.4 Step Four: Get the UI Working

This is mostly writing the class constructor and subsidiary functions. Typically you will create one
SynthPanel for each tab in your editor. A SynthPanel is little more than a JPanel with a black background:
you can lay it out however you like. However Edisyn typically lays it out as follows:

1. At the top level we have a VBox. This is a vertical Box to which you can add elements conveniently.
You can also designate an element to be the bottom of the box, meaning it will take up all the remaining
vertical space.

2. In the VBox we will place one or more Categories. These are the large colorful named regions in
Edisyn (like “LFO” or “Oscillator”).

3. Typically inside a Category we’d put an HBox. This is a horizontal box to which you can add elements.
You can also designate an element to be the last item of the box, meaning it will take up all the
remaining horizontal space. By doing this, the Category’s horizontal colored line nicely stretches the
whole length of the window.

4. Inside the HBox you put your widgets. You might lay them out with additional VBoxes and HBoxes as
you see fit. It’s particularly common to one or more small widgets (check boxes, choosers) in a VBox,
which will cause them to be top-aligned rather than vertically centered as they would if they were
stuck directly in the HBox. It’s helpful to look at existing patch editors to see how they did it.

5. If you need multiple rows, you should put a VBox in the Category, and then put HBoxes inside of that.

6. You might have multiple Categories on the same row. To do this, just put them in an HBox. Make sure
the final Category is designated to be the Last Item of the HBox. You’d put this HBox in the top-level
VBox instead of the Categories themselves.

21

The first category is the Synth Category. It is typically named the same as getSynthName(), its color is
edisyn.gui.Style.COLOR GLOBAL, and contains the patch name and patch/bank information, and perhaps
a bit more (for example, Waldorf synthesizers have the “category” there too).

To the right of the first category is usually (but not always) various global categories. They’re usually
edisyn.gui.Style.COLOR A.

If you have additional categories, you might distinguish them using edisyn.gui.Style.COLOR B, and
eventually edisyn.gui.Style.COLOR C.

You can lay out the rest of the categories as you see fit.

Think about Parameters Synthesizer parameter values will be stored in your Synth object’s Model. These
parameters will be stored in your synth’s Model object. Each parameter has a Key. Edisyn traditionally
names the keys all lower case, plus numbers, with no spaces or hyphens or underscores, and tries to keep
the keys fairly similar to how your synth sysex manual calls them. They’re usually described with a category
descriptor (such as op3 and then the parameter name proper (such as envattack), resulting in the final key
name op3envattack. Various global parameters are just the parameter name: for example, it’s standard in
Edisyn that the patch name be just called name, the patch number is called number, and the bank number is
called bank.

Often parameters (as set by widgets) are exactly the same as the various elements you send and receive
to the synthesizer. But sometimes they’re not. Many synthesizers pack multiple parameters (like LFO Speed
+ Latch) together into a single variable, which is very irritating. You want to lay out what the real parameters
of your synthesizer are, that the user would be modifying, not what you’d be packing and sending to the
synth.

Another issue is how your synthesizer interprets values sent over sysex or NRPN. Consider BPM for a
moment. Perhaps your synthesizer has BPM values of 20...300, and there are missing values (for example,
there’s no 21). The actual values are mapped to the numbers 0...127. What values should you store? In my
patch editors, I store the values in the model as 0...127, which makes it easy to emit them. But then I have to
have an elaborate conversion function to map them to 20...300 for display on-screen.

Also some synthesizers have holes in their ranges. For example, they might permit the values 0...17
and the values 20...100, but do not permit 18 and 19. What to do then? You probably ought to compact
them to be contiguous between some min and max: for example, you might compact it to 0...98. When
displayed, use a custom displayer, and when emitting or parsing them, you’ll have to map them to your
internal representation accordingly.

In summary: your internal parameters ought to have contiguous ranges and should make sense from the
user’s perspective and not the synthesizer’s weird parsing perspective.

So how to set parameters? You usually don’t add the key yourself, though you could. Instead, normally
you tell the widget the name of the parameter it’s modifying (the key), and it adds it to the model on its
own. Parameters are either strings or are numbers. Numerical parameters all have a min and a �max value,
inclusive: usually the widget will set those for you. They also may have a MetricMin and MetricMax value,
and you may need to set those manually.

MetricMin and MetricMax work like this. Some numerical parameters are metric, meaning they’re a
range of numbers where the order matters, such as 0–127. Other numerical parameters are categorical
(or “non-metric”), meaning that the numbers just represent an ID for the parameter. For example, a list of
wavetables is categorical: it doesn’t really matter that wavetable 0 is “HighHarm3”: it’s just where it’s stored
in your synth.

Edisyn is smart about mutating and recombining metric parameters, but for non-metric ones it just picks
a new random setting. Sometimes your parameters are both metric and non-metric. For example, some
parameter might have the values 1–32 plus the non-metric values “off” (0), “uniform” (17), and “multi” (18),
or whatever. In this case, your min is 0 and your max is 18. But your metric min is 1 and your metric max is 16.
This tells Edisyn that values outside the metric min / metric max range should be treated as non-metric.17 If

17What if your synth has metric values on the outside and non-metric value on the inside? Edisyn can’t handle that. Thankfully I’ve
not seen it yet.

22

you have this situation, you’ll need to set the Metric Min and Metric Max manually.
Parameters can be declared immutable, meaning Edisyn can’t mutate them or cross them over at all.

Also, all string parameters are automatically immutable. You’ll need to declare the others.

Copying and Distributing Parameters If your synth has multiple copies of the same category (for example,
multiple LFOs), you can copy parameters wholesale from one category to another. To do this, parameters
must obey a certain convention. Specifically, parameters in a category must all start with the same preamble,
which must contain no digits, followed by a category number, which must be all digits. After that, you can
have whatever you like. For example, lfo1rate or osc14attack. If you have four LFO categories, their
category numbers might be 1...4, say. After you have set up your parameters appropriately, you can turn on
copy and paste in a given category by calling makePasteable(preamble), passing in the preamble (not the
category number).

Categories also often contain multiple instances of a given parameter. For example, a step sequencer
category might contain 16 steps. You can distribute values to all such parameters if you follow the a similar
convention, specifically, parameters should start with a preamble, and then the first string of digits will refer
to the index of the parameter. For example, if your step sequencer had seq as its preamble, perhaps you
might have seqstep1 through seqstep16. You an have additional text, such as seqstep1attack or whatnot.
After you have set up your parmaters, you can turn on distribution by calling makeDistributable(preamble),
passing in the preamble.

Your category can also do both of these things. In this case, all parameter names should obey the
copy/paste convention, and distributable parameters should have a second string of digits somewhere
later in the parameter name which refers to the parameter index. For example, you might have seq1step1

through seq1step16 for sequencer 1, and seq2step1 through seq2step16 for sequencer 2.
Finally, by default categories can be reset. It’s probably wise to turn this off in the global category. This is

done by calling makeUnresttable().

Common Widgets Edisyn has a number of widgets available. Most widgets are associated with a single
parameter (a “key”). There is no reason you can’t have multiple widgets associated with the same key: when
that parameter is updated, all associated widgets are updated.

The most common widgets are:

• StringComponent This is the only String widget. It’s used for patch names. For a patch name, you
typically implement it like this:

String key = "name"; // the key in the model

String instructions = "Name must be up to 10 ASCII characters.";

JComponent comp = new StringComponent("Patch Name", this, "name", maxLength, instructions)

{

public String replace(String val)

{

return revisePatchName(val);

}

public void update(String key, Model model)

{

super.update(key, model);

updateTitle();

}

};

In conjunction with this, you will want to override the revisePatchName(...) method in your Synth
subclass. This method modifies a provided name and returns a corrected version. The default version,

23

which you might call first (via super), removes trailing whitespace. You can then revise incorrect
characters, length, and so on.

• Chooser This is a pop-up menu or combo box, and it’s a numerical component. You provide it with
an array of strings representing the parameter values 0...n. For example, you might set up a wavetable
chooser as:

String key = "wave"; // the key in the model

String[] params = WAVE_OPTIONS; // this is an array of wave names elsewhere

JComponent comp = new Chooser("Wave", this, key, params);

There’s an option to add images to the chooser’s menu:

public static final ImageIcon[] MY_WAVE_ICONS =

{

new ImageIcon(YamahaDX7.class.getResource("Wave1.png")),

new ImageIcon(YamahaDX7.class.getResource("Wave2.png")),

... // and so on

};

String key = "wave"; // the key in the model

String[] params = WAVE_OPTIONS; // this is an array of wavetable names elsewhere

JComponent comp = new Chooser("Wave", this, key, params, MY_WAVE_ICONS);

These PNG files would be stored in your edisyn/synth/yamahadx7/ directory. They should be no
taller than 16 pixels high: OS X refuses to display comboboxes with icons taller than that.

• Checkbox This is a simple checkbox. By default it’s on, but there’s a setting to have it by default be
off. On is 1 and Off is 0 as stored in the model.

String key = "arpeggiatorlatch"; // the key in the model

JComponent comp = new CheckBox("Arpeggiator Latch", this, key);

The’s a bug in OS X which mis-measures the width of the string needed, so you might see “Arpeggia...”
instead of “Arpeggiator Latch” on-screen. To fix this, just add a tiny bit to the width: usually one or
two pixels are enough:

String key = "arpeggiatorlatch"; // the key in the model

JComponent comp = new CheckBox("Arpeggiator Latch", this, key);

((CheckBox)comp).addToWidth(1);

• LabelledDial This is a labelled dial representing a collection of numbers from some min to some
max.

int min = 1;

int max = 16;

Color color = edisyn.gui.Style.COLOR_A; // Make this the same color as the enclosing Category

JComponent comp = new LabelledDial("MIDI Channel", this, "midichannel", color, min, max);

It’s common that you need more lines in your label. Perhaps you might say:

24

int min = 1;

int max = 16;

Color color = edisyn.gui.Style.COLOR_A; // Make this the same color as the enclosing Category

JComponent comp = new LabelledDial("Incoming", this, "midichannel", color, min, max);

((LabelledDial)comp).addAdditionalLabel("MIDI Channel");

You can add additional (third, fourth, ...) labels too. Note that you can change the first label text later
on (with setLabel(...)) but you can’t change the label text of additional labels.

It is very common to need a custom string display for certain numbers in the center of the dial. You
can do it like this:

int min = 0;

int max = 17;

Color color = edisyn.gui.Style.COLOR_A; // Make this the same color as the enclosing Category

JComponent comp = new LabelledDial("MIDI Channel", this, "midichannel", color, min, max)

{

public String map(int val)

{

if (val == 0) return "Off";

else if (val == 17) return "Omni";

else return "" + val;

}

};

Note that if you’re just trying to subtract a certain amount from the dial, for example, to display the
values 0...127 as the values -64...63, then there’s a constructor option on LabelledDial for this:

new LabelledDial("Pan", this, "pan", color, 0, 127, 64) // subtracts 64 before displaying

This brings us to the discussion of symmetry. Sometimes you want the dial to be symmetric looking,
and sometimes not. Edisyn tries hard to see to it that, whenever possible, the “zero” position on the
dial is vertically directly above or directly below the center of the dial. For example, a symmetric dial
going from −100 to +100 would have zero at the top: and a dial going from 0 to 127 would have zero
at the bottom (this second case results in Edisyn’s unusual “C”-shaped dials). The “zero” position
doesn’t always mean 0: it should be the notional identity for the dial. For example, a Keytrack dial
might have 100% be the identity position.

By default Edisyn’s dials assume that the zero position is at the beginning of the dial, resulting in the “C”
shape. Because a great many synthesizers go from 0...127 or from 0...100, if you use the aforementioned
constructor option to subtract either 64 or 50 from the dial, Edisyn will automatically make it look
symmetric.
Sometimes you need to customize the orientation in order to keep the zero position verti-
cally centered. For example Blofeld’s Arpeggiator has a variety of dials which aren’t quite
symmetric, because there are some unusual options at the start, as shown on the top figure
at right. But even worse: the Kawai K4 Effects patch has a number of dials which look like
a reversed “C” because of so many additional options loaded at the end of the dial, as shown
on the bottom figure.

You can customize the orientation in two ways. First, if you override LabelledDial’s is-
Symmetric() method to return true, then the dial will display itself as fully symmetric.
Second, you could override LabelledDial’s getStartAngle() method to return the desired angle of the
start (leftmost) position of your curve. The default is 270 (the “C”), and when fully symmetric it’s
90 + (270 / 2).

25

When the user double-clicks on a LabelledDial, try to have the LabelledDial go to some default position.
This is often the “zero” position: but sometimes it’s not. At any rate, it’s almost always most common
position the user would want, whatever that is. By default the “default position” is the first position if
asymmetric, and the center position if symmetric. You can change the default position by overriding
LabelledDial’s getDefaultValue() method to return a different value.

Last but not least! If you have a mixture of metric and non-metric values (for example, 0=“Off”, 1...32
= 1...32, and 33=“Uniform”), you will need to modify the MetricMin and MetricMax declarations.
Normally LabelledDial declares MetricMin to be the same as Min and MetricMax to be the same as
Max. But in this example, your minimum metric value is 1 and your maximum metric value is 32.

getModel().setMetricMin("whateverkey", 1);

getModel().setMetricMax("whateverkey", 32);

It sometimes happens that none of the LabelledDial values should be thought of as metric. For example,
a previous code example, we were using the LabelledDial to select the MIDI Channel. Now, channels
aren’t metric: they’re just 16 unique labels for channels which happen to be numbers. In this case, we
should remove the metric min and max entirely, so Edisyn considers the entire range to be non-metric.
To do this, we say:

getModel().removeMetricMinMax("midichannel");

• IconDisplay This displays a different icon for each value in your model. You can’t change the values
by clicking or dragging on an IconDisplay: instead, use a separate LabelledDial or Chooser.

ImageIcon icons = MY_ALGORITHM_ICONS;

JComponent comp = new IconDisplay("Algorithm Type", icons, this, "algorithmtype");

Your images can be PNG or JPEG files: I suggest PNG. You might create an instance variable like this:

public static final ImageIcon[] MY_ALGORITHM_ICONS =

{

new ImageIcon(YamahaDX7.class.getResource("Algorithm1.png")),

new ImageIcon(YamahaDX7.class.getResource("Algorithm2.png")),

... // and so on

};

These PNG files would be stored in your edisyn/synth/yamahadx7/ directory.

• KeyDisplay This displays a keyboard. You specify the min and max keys (which must be white keys),
and a transposition (if any) between keys and the underlying MIDI notes actually generated. When the
user chooses a key, the KeyDisplay will update a value 0...127 corresponding to the equivalent MIDI
note value.

The KeyDisplay can update dynamically or statically. When dynamic, then every time you scroll
through the display and a note is highlighted, the model is updated. When static, the model is only
updated when a note is finally chosen and the user has released the mouse button. To set this, use
setDynamicUpdate(...).

You will probably want your KeyDisplay to update in concert with a LabelledDial. This is easy: just
set them to the same key in the model. but synthesizers are inconsistent in how they describe notes,
because MIDI didn’t specify a notation. For example, MIDI note 0 is “C -2” in Yamaha’s notation (also

26

adopted by Kawai and some others), or it is “C -1” in Scientific Pitch Notation (or SPN18), or just play “C
0” in simple MIDI notation. You can specify this by calling the method setOctavesBelowZero(...).

In some cases you might wish to be notified whenever the user clicks on a key, or drags to it, rather
than when the key actually is updated (which might only happen on button release). Typically this
happens because you want to actually play the note so the user gets some feedback. To be notified of
this, just override the method userPressed(...).

• PushButton This doesn’t maintain a parameter at all: it’s just a convenience cover for JButton. You
see it in Multimode patches where pressing it will pop up an equivalent Single patch (it’s usually called
“Show”):

JComponent comp = new PushButton("Show")

{

public void perform()

{

// do your stuff here

}

};

Popping up new synth panels from a multimode panel is complex. Take a look at how
edisyn/synth/waldorfmicrowavext/WaldorfMicrowaveXTMulti.java does it.

• PatchDisplay This displays your patch and bank in a pleasing manner.19

String numberKey = "number"; // typically or null if you have no patch numbers

String bankKey = "bank"; // typically, or null if you have no bank numbers

int numberOfColumns = 10; // for example

JComponent comp = new PatchDisplay(this, "Patch", bankKey, numberKey, numberOfColumns)

{

public String numberString(int number) { "" + number} // format as you like

public String bankString(int bank) { "" + bank} // format as you like

};

• EnvelopeDisplay This displays a wide variety of envelopes. Envelopes are drawn as a series of
points, and between every successive pair of points we draw a line. You will provide the EnvelopeDis-
play with several arrays defining the coordinates of those points.

There are two main kinds of envelopes your synthesizer might employ. First, your synthesizer might
define parameters (like attack) in terms of the height of the attack and also the amount of time necessary
to reach that height. This is intuitive to draw, but in fact many synthesizers don’t do it that way. Instead,
some define it in terms of the height of the attack and the rate of change (or slope, or angle). In the first
case, the height of the attack has no bearing on how long it takes to reach it. But in the second case, the
amount of time to reach the attack depends on both the height and on the rate. This is even further
complicated by some synthesizers (like Yamaha’s) which use rate, but compute it not in terms of angle,
but in terms of (essentially) 90 degrees minus the angle. Thus a steeper rate is a lower number. You will
need to figure out what your synthesizer does exactly.

Let’s say your synth does the easy thing and computes stuff in terms of height and amount of time.
Then you set up an Envelope Display with four elements:

18... or American Scientific Pitch Notation(ASPN), or International Pitch Notation (IPN). They’re all pretentious names.
19Why is PatchDisplay so elaborate? Why not just use a JLabel or something? Originally PatchDisplay did other complex things like

change color. Now it doesn’t.

27

– An array of keys (some of which can be null) of the parameters which define the amount of time
for each segment. If a key is null, the parameter value is assumed to be 1.0.

– An array of keys (some of which can be null) of the parameters which define the height for each
segment. If a key is null, the parameter value is assumed to be 1.0.

– An array of constant doubles which will be multiplied against the time parameters. You want
these constants to be such that, when the time parameters are at their maximum length, their
values, multiplied by these constants, will sum to no more than 1.0

– An array of constant doubles which will be multiplied against the height parameters. You
want these constants to be such that, when the any given height parameter is maximum, when
multiplied against the constant it will be no more than 1.0.

Here’s how you’d make an Envelope Display for an ADSR envelope where each of the values varies
0...127:

String[] timeKeys = new String[] { null, "attack", "decay", null, "release" };

String[] heightKeys = new String[] { null, "attackheight", "sustain", "sustain", null };

double[] timeConstants = new double[] { 0.0, 0.25 / 127, 0.25 / 127, 0.25, 0.25 / 127 };

double[] heightConstants = new double[] { 0.0, 1.0 / 127, 1.0 / 127, 1.0 / 127, 0.0 };

JComponent comp = new EnvelopeDisplay(this, Color.red, "ADSR",

timeKeys, heightKeys, timeConstants, heightConstants);

Notice that "sustain" is used twice: thus the line stays horizontal; and furthermore its time constant
is fixed to 0.25 so it always takes up 1/4 of the envelope space. Also notice that in this example the
beginning and end of the ADSR envelope are fixed to 0.0 height. That doesn’t have to be the case. And
maybe you don’t have an attack height: it’s always full-on attack. Then you’d say:

String[] heightKeys = new String[] { null, null, "sustain", "sustain", null };

double[] heightConstants = new double[] { 0.0, 1.0, 1.0 / 127, 1.0 / 127, 0.0 };

It’s possible that your envelope isn’t always positive: it can go negative. The EnvelopeDisplay normally
assumes that your parameters are all positive numbers (like 0–127), but it does allow to draw a line
indicating where the X axis should be, via the setAxis(...) method. See the fourth example in Figure 4.
You can also indicate that your Y values are signed, which means that when multiplied against their
respective constants, they will range from -1...1 instead of from 0...1. This is done with setSigned(...).

You also can also tell the EnvelopeDisplay to draw a vertical line at some key position and a dotted line
at another, using the methods setFinalStageKey(...) and setSustainStageKey(...) respectively (these
are named after their use in the Waldorf Microwave XT). These keys should specify the stage number
(the point) where the line is drawn. For example, if the sustain stage key’s value is 4, then the line
should be drawn through point number 4 (zero-indexed) in the envelope. See the third example in
Figure 4.

You can also specify two intervals with start and stop keys respectively. At present the EnvelopeDisplay
supports two intervals. These are set up with setLoopKeys(...). These keys should specify the stage
number (the point) where the intervals are marked. For example, if the interval end’s key value is 4,
then the end should be marked exactly at point number 4 (zero-indexed) in the envelope. Again, see
the third example in Figure 4.

You can also postprocess the sustain stage, final stage, or loop keys with postProcess-
LoopOrStageKey(...). This function takes a key and its value, and returns a revised value, perhaps to
add or subtract 1 from it.

What if your synth uses angles/rates/slopes rather than time intervals? For example, the Waldorf
Blofeld does this. To handle this situation, we add an additional array of double constants called angles.

28

It works like this. The height keys and height constants are exactly as before. And timeConstants[0]

still defines the x position of the first point in the envelope, as before. But the other time constants
work differently.

Specifically, to compute the X coordinate of the next point, we take its key value and multiply it by
the corresponding angle, and then take the absolute value. This tells us the positive angle of the line.
Angles can never be negative: whether the line has a positive or negative slope is determined entirely
by the relative position of the height keys.

Since angles can and will create very strung-out horizontal lines, the remaining time constants tell us
the maximum length of a line: these again should sum to 1.0.

Angles/rates create weird idiosyncracies you’ll have to think about. For example, below is the code for
the Blofeld’s ADSR envelope. As the Sustain gets higher, the Release gets longer but the Decay gets
shorter, because the synth is basing this envelope on rate and not time.20 One consequence of this is
that the Decay and Release together are as long as the Attack, because if you’re basing on rate, then
the amount of time to go up is the same as the total amount of time to go down, and both Decay and
Release go down. Thus we have a max width of 1/3 for all four portions: but at any time they can only
sum to 1/3 [attack] + 1/3 [sustain] + 1/3 [decay + release].

In the Blofeld ADSR, all the values go 0...127, and the angles are displayed by Edisyn to go from vertical
to π/4 (we don’t want them too flattened out). See if the code below makes sense now:

String[] timeKeys = new String[] { null, "attack", "decay", null, "release" };

String[] heightKeys = new String[] { null, null, "sustain", "sustain", null };

double[] timeConstants = new double[] { 0, 0.3333, 0.3333, 0.3333, 0.3333};

double[] heightConstants = new double[] { 0, 1.0, 1.0 / 127.0, 1.0/127.0, 0 };

double[] angles = new double[] { 0, (Math.PI/4/127), (Math.PI/4/127), 0, (Math.PI/4/127) };

JComponent comp = new EnvelopeDisplay(this, Color.red, "ADSR",

timeKeys, heightKeys, timeConstants, heightConstants, angles);

Sometimes you need both angles and times. For example, in the E-Mu Ultra Proteus, attack and decay
and release are measured in rate, but “hold” measures how long (in time) we stay at maximum attack
before starting decay. To do this, if you set the appropriate angle to EnvelopeDisplay.TIME, then the
corresponding time constant will revert to being used as a measure of time rather than a maximum
length for the angle.

This still might not be flexible enough for you. For example, the Yamaha TX81Z has, shall we say, an
unusual approach to defining angles. You can do further post processing on the 〈x, y〉 coordinates of
each of the points (where both X and Y vary from 0...1) by overriding the postProcess(...) method like
this:

JComponent comp = new EnvelopeDisplay(this, Color.red, "ADSR",

timeKeys, heightKeys, timeConstants, heightConstants, angles)

{

public void postProcess(double[] xVals, double[] yVals)

{

// modify xVals and yVals as you see fit.

}

};

20Edisyn no longer displays this way for the Blofeld, because although the Blofeld indeed follows angle/rate, for large values the
Blofeld’s functions start getting close to following time. The problem is that while the Blofeld documentation acknowledges that it
follows angle/rate, the Blofeld’s screen incorrectly displays envelopes following time! When I wrote this documentation I was using
angle/rate for the Blofeld because it’s the “true” underlying behavior, but I’ve since changed the patch editor back to displaying time
because using something other than what’s on the Blofeld screen would really confuse owners, and in the Blofeld’s case it’s a subtle
difference.

29

Envelopes generally stretch to fill all available space: they’re particularly good to put as the “last”
element in an HBox via addLast(). But you might want to add them elsewhere and fix them to a specific
width. In this case, just call setPreferredWidth(...).

• Spacers Occasionally you might need to add some fixed space to separate widgets. See the Strut

class for factory methods that can build some struts for you.

Dynamically Changing Widgets One gotcha which shows up in a number of synthesizers (particularly
in effects sections) is that if you change (say) the effect type, the number of available parameters, and their
names, will change as well. Eventually Edisyn will have a widget that assists in this, but for now you’ll have
to manually add and remove widgets.

Edisyn’s patch editors usually do this by defining a bunch of HBoxes, one for each effect type, and then
remove the current HBox and add the correct new one dynamically in response to the user changing types.
You can see a simple example of this in the Waldorf Microwave XT code, and a more elaborate version in the
Blofeld code (where different effects actually share specific widgets).

You’ll have to manually remove and add these widgets or HBoxes. But when should you do so? That’s
pretty easy: when the effect type has been updated. Typically the effect type is shown as a Chooser, and
when it is updated, the Chooser’s update(...) method is called:

JComponent comp = new Chooser("Effect Type", this, "effecttype", types)

{

public void update(String key, Model model)

{

super.update(key, model); // be sure to do this first

int newValue = model.get(key, 0); // 0 is the default if the key doesn’t exist, but it will.

// now do something according to the value newValue

}

};

You’ll see various patch editors have implemented update(...) for various purposes.
Hand in hand with this: in some cases you want the update(...) method to be called not only when the

widget’s key is updated, but when some other key is updated. To do this, you can register a widget to be
updated for that key as well. This is done as follows:

model.register("keyname", widget);

For example, in the Yamaha TX81Z, the operator frequency is computed as a combination of three
widgets: and in the final widget (“Fine”) the final frequency is displayed. To do this, we have registered
the “Fine” widget to revise itself (via the map(...) method) whenever any of three different parameters is
updated.

10.5 Step Five: Get Input from the Synth (and File Loading) Working

There are two ways the synth can send you information: as a bulk sysex patch dump and as individual
parameters. We’ll start with the bulk sysex patch dump.

Bulk Dumps First, you need to implement the recognize(...) method. This method tells Edisyn that you
recognize a bulk dump sysex message. You should verify the message length and the header to determine
that it’s a bulk dump and in fact meant is for your type of synthesizer and is probably correct. This method
will also be called when loading a sysex file from disk.21

21In fact the primary purpose of this method is to recognize sysex data loaded from disk: and so other sysex messages don’t have
their own recognize(...) method.

30

Next, you need to implement the parse(...) method. In this method you will be given a data array and
your job is to set the model parameters according to your parsing of this array. You set parameters using the
set(...) methods in the model, like this:

getModel().set(numericalKey, 4.2); // or whatever new value

getModel().set(stringKey, "newValue"); // or whatever new value

It is possible that the parse(...) method will actually contain multiple sysex messages, if you loaded
from a file. For example, the Yamaha TX81Z’s patch isn’t a single sysex messages, it’s two messages, to be
backward compatible with an unimportant earlier synthesizer for some ridiculous Yamaha reason. When
you receive a dump via the synth, it’ll only be one or other other of these messages. But if you receive a
TX81Z dump from a file, it’ll be both messages. Thankfully, the parse() method will tell you whether you’re
receiving from a file or not.22 So if you do something fancy with emit(...) later, you may need to revise your
parse(...) implementation.

You also need to implement the gatherPatchInfo(...) method. This method is nontrivial to implement.
Its function is to work with the user to determine the patch number, bank number, etc. necessary to ask
the synthesizer for a given patch. I suggest you take a look at existing patch editors to see how they have
implemented it, and largely copy that. You’ll notice that patch-gathering code usually pops up a dialog box
with a bunch of rows in it. How is this done? Edisyn’s Synth.java class has a special method to make this
easy: showMultiOption(...).

Additionally, you need to override methods which issue a dump request to the synth:

• performRequestDump(...) or requestDump(...) Override one of these methods to request a dump
from the synth of a specific patch. requestDump(...) is simpler: you just return bytes corresponding
to a sysex message to broadcast to the synth. performRequestDump(...) lets you manually issue the
proper commands.

In the second case, the edisyn.Midi class, instantiated in the midi instance variable, has several methods
for constructing MIDI messages: you can send them, or send sysex messages (as byte arrays) via the
tryToSendMIDI() or tryToSendSysex() methods. Also you’ll have to handle changing the patch: see
the information in Blank.java’s documentation on this method for an example.

Both of these methods take a Model called tempModel which will hold information concerning the
patch number and bank number that you should fetch. This model was built by gatherPatchInfo(...).

• performRequestCurrentDump(...) or requestCurrentDump(...) Override one of these methods to
request a dump from the synth of the current patch being played. These methods are basically just
like performRequestDump(...) and requestDump(...), but they don’t take a model (there’s no patch
number).

You will also probably need to implement changePatch(...) to issue a patch change (it’ll be called as part
of performRequestDump(...)). It’s possible that your synthesizer must pause for a bit after a patch change (the
Blofeld, for example, requires almost 200ms). You may want to implement the getPauseAfterChangePatch()
method to slow Edisyn down. If your synth can’t change patches to whatever you’re editing, that’s okay, but
you’ll need to handle the right behavior later on when you emit a patch to it.

If your synth cannot load the current patch you can avoid implementing some of these methods by
saying the following:

receiveCurrent.setEnabled(false); // turns of the "Request Current Patch" menu option

You should do this in an overridden version of the sprout() method (be absolutely sure to call su-
per.sprout() first).

22Though in fact the TX81Z implementation — and in fact all Edisyn’s parse editors to date — don’t change their parse(...) behavior
when receiving from a file.

31

You will also want to override some other methods. First getPatchName(model) should extract the patch
name from the provided model (probably via model.get("name", "foo")). Second, you also will want to
override the revisePatchName(...) method if you’ve not already done so for the StringComponent widget.
This method modifies a provided name and returns a corrected version. The default version, which you
might call first (via super), removes trailing whitespace. You can then revise incorrect characters, length, and
so on. Third, if your synthesizer uses an ID to distinguish itself from other synthesizers of the same type (the
Waldorf synths do this for example), you should override the reviseID(...) method to correct provided IDs.
If this method returns null (the default), the ID won’t even appear as an option.

Finally, you will probably want to override the revise() method to verify that all the model parameters
have valid values, and tweak them if not. The default version, which you can call via super, does most of the
heavy lifting: it bounds the values to between their min and max. You might also verify that the patch name
is correct here. See the Waldorf Blofeld code as an example of what to do.

See also the description of these methods in edisyn/synth/Blank.java

Individual Parameters [If your synth doesn’t send out individual parameters, or you don’t want to be
bothered right now in handling this, you can just ignore this section for now]. Individual parameters might
come in as sysex messages, as CC messages, or as NRPN. Here are your options:

• Sysex Messages Here, override the method parseParameter(...). Note that the provided data might
be something else sent via sysex besides just a parameter change. You can test for that too (and handle
it here if you like).

• NRPN or Cooked CC messages A cooked CC message is one which doesn’t violate any of the
RPN/NRPN rules (it’s not 6, 38, 97, 98, 99, 100, or 101). At present Edisyn does not recognize 14-bit
CC. If your messages are always cooked or are NRPN, then you can handle them via handleSynthC-
COrNRPN(...), which takes a special MIDI.CCData argument that tells you about the message (see
the Midi.java class).

• Raw CC Messages A raw CC message is any message number 0...127 just sent out willy-nilly, not
respecting things like RPN/NRPN or 14-bit CC. If your synth sends out raw CC messages, you
need to override getExpectsRawCCFromSynth() to return true. Then you handle the messages via
handleSynthCCOrNRPN(...) as discussed above.

Again, you update one or more parameters in response to these messages using one of:

getModel().set(numericalKey, 4.2); // or whatever new value

getModel().set(stringKey, "newValue"); // or whatever new value

Note on File Loading If your bulk dumps come in as sysex messages, then congratulations, you already
have file loading working. If not, you will need to invent a bulk sysex format and implement it in the parse(...)
(and later emit(...) methods even if your synthesizer never sends stuff via sysex (such as is the case in the
PreenFM2). That way you can still load and save files.

You probably ought to use the “educational use” wildcard MIDI sysex ID (0x7D). Edisyn’s made-up
sysex header for the PreenFM2 currently looks like this: 0xF0, 0x7D, P, R, E, E, N, F, M, 2, version.
Presently version is 0x0. You might do something similar.

10.6 Step Six: Get Output to the Synth (and File Writing) Working

If you’ve gotten this far, writing is simpler than parsing and requesting, because you’ve already written a lot
of the support code. You can write out both bulk dumps and individual parameters (as you tweak widgets).

32

Bulk Dumps You will need to implement one of the following two methods: either emitAll(Model, ...) or
emit(Model, ...). The emit(Model, ...) method is simpler: you just build data for a sysex message and return
it. In emitAll(Model, ...), you build an array consisting of either javax.sound.midi.SimpleMessage objects or
byte[] arrays corresponding to sysex messages, or a mixture of the two. These will be emitted one by one.
Most commonly you just override emit(Model, ...).

Both emit(Model, ...) and emitAll(Model, ...) receive a temporary model. This model will contain a small
bit of data sufficient to inform you of the patch and bank number are that the patch is going to be emitted
to (via Edisyn’s “write” procedure). Alternatively if the toWorkingMemory argument is TRUE, then you’re
supposed to emit to current working memory (Edisyn’s “send” procedure).

You may not be able to write, or you may not be able to send to a specific patch, or to the current patch,
depending on your synthesizer. If so, you can do any of:

%transmitTo.setEnabled(false); // turns of the "Send to Patch..." menu option

transmitCurrent.setEnabled(false); // turns of the "Send to Current Patch" menu option

writeTo.setEnabled(false); // turns of the "Write to Patch..." menu option

Again, these should be set in an overridden version of the sprout() method. Be sure to call super.sprout()
first, or bad things will probably happen.

Note that emit(Model, ...) and emitAll(Model, ...) are also used to write out files. If you implemented
emitAll(...), be aware that Edisyn will strip out all of the javax.sound.midi.SimpleMessage messages and just
pack together then remaining sysex messages. This is what will result in multiple sysex messages being read
in in a single parse(...) dump, as discussed earlier.

Some synthesizers need a bit of time to rest after receiving a dump before they can do anything else. You
can tell Edisyn to pause after a dump by overriding getPauseAfterSendAllParameters().

Individual Parameters In response to changing a widget, Edisyn will try to change a parameter on
your synthesizer. This is similar to the bulk dump. Specifically, there are two methods, emit(String) and
emitAll(String), which work like their bulk counterparts, except that they are tasked to emit a single parameter
to the synthesizer. Implement only one of these methods. If you don’t want to do this, just don’t implement
these methods.

If your synthesizer accepts NRPN (such as the PreenFM2), the Midi.java file has some utility methods for
building NRPN messages easily.

It’s possible that your synthesizer can only accept messages at a certain rate. You may want to implement
the getPauseBetweenMIDISends() method to slow Edisyn down.

Bulk Dumps Via Individual Parameters Some synthesizers, such as the PreenFM2, do not accept a bulk
dump method at all. Rather you send a “bulk dump” as a whole lot of individual parameter changes. If
your synthesizer is of this type, you should override the method getSendsAllParametersInBulk() method
to return false.

Note on File Writing See the earlier note at the end of Section 10.5 about File Loading: as discussed there,
if your synth doesn’t read or write sysex, you’ll still need to invent a bulk sysex format, and implement it in
the emit(...) and parse(...) methods, so you can save and load files to disk.

10.7 Step Seven: Create an Init File

Now that you’ve got everything coded and working (hah!) it’s time to create an Init file. To do this, either
request an init patch from the synthesizer, or create an appropriate one yourself. Then save it out as a sysex
file.

Next, move that file and rename it to edisyn/synth/yamahadx7/YamahaDX7.init. Edisyn will load this
file to initialize your patch editor. To do this, add to the very bottom of your constructor the following line:

loadDefaults();

33

10.8 Step Eight: Get Batch Downloads Working

Edisyn can download many patches at once. To support this, you need to implement a few methods.23

First, there’s getPatchLocationName(...), which returns as a String a short version of the patch address
(bank, name) to be used in a saved filename. Next, there’s getNextPatchLocation(...) which, given a Model
containing a patch address, returns a model with the “next” patch address (wrapping around to the very
first address if necessary). Finally you need to implement patchLocationEquals(...), which compares two
patches to see if they contain the same patch address.

A few synthesizers (notably the PreenFM2) don’t send individual patches as single sysex patch dumps,
but rather send them as multiple separate NRPN or CC messages. Edisyn needs to know this so it can make
a better guess at whether a patch dump has arrived and is ready to be saved. To let Edisyn know that your
patch editor is for a synthesizer of this type, override the method getReceivesPatchesInBulk() to return
false.

Compared to the other stuff, this step is easy.24

10.9 Step Nine: Other Stuff

You’re almost done! Some other items you might want to do. First, you may need to tweak the mutability of
parameters. No string parameters are mutable, but by default all numerical ones are (including checkboxes
and choosers). Occasionally you’d want to make some of those immutable so they will not be modified
during merge, hill-climbing, etc. To do this, you can call setStatus(..., Model.STATUS IMMUTABLE) on
the model.

Second, whenever your patch editor becomes the front window, the method windowBecameFront()
will be called. You could override this to send a special message to your synth to update it somehow. For
example, the Waldorf Microwave XT patch editors send a message to the Microwave XT to tell it to switch
from single to multi-mode (or back) as appropriate.

Finally when the user clicks on the close box, the method requestCloseWindow() is called. You can
override this to query the user about saving the patch etc. first, and then finally return the appropriate
value to inform Edisyn that the window should in fact be closed. Though in fact currently no patch editors
implement this method at all.

10.10 Step Ten: Submit Your Patch Editor!

• Clean up the editor code, make it really polished, well documented, and good looking.

• Test it well.

• Copyright your editor code at the top of the file. License the editor code under Apache 2.0 (I don’t
accept anything else).

• Send the whole directory to me! I’d love to include it.

23Until you implement getPatchLocationName(...) to return something other than null, Edisyn will keep the Batch Downloads
menu disabled. So when you implement this method, be sure to also implement the other methods here at the same time.

24Note that lots of synthesizers have sysex facilities to dump the entire patch memory, or dump an entire bank, etc. Edisyn doesn’t
use these; it requests patches one by one. This is slower but saves you a lot of coding and is consistent across synthesizers. So you’re
welcome.

34

